Přejít k obsahu


Automated CFRP impact damage detection with statistical thermographic data and machine learning

Citace:
MOSKOVCHENKO, A.; ŠVANTNER, M. Automated CFRP impact damage detection with statistical thermographic data and machine learning. International Journal of Thermal Sciences, 2025, roč. 208, č. FEB 2025, s. nestránkováno. ISSN 1290-0729.
Druh: ČLÁNEK
Jazyk publikace: eng
Anglický název: Automated CFRP impact damage detection with statistical thermographic data and machine learning
Rok vydání: 2025
Autoři: Magistr Alexey Moskovchenko , Ing. Michal Švantner Ph.D.
Abstrakt EN: The study is focused on the use of machine learning models for the automated detection of impact damage in carbon fiber reinforced polymer (CFRP) by flash-pulse thermographic testing. A new method for thermographic data pre-processing, which is based on statistical features, was proposed. Nine machine learning models for the automated detection of impact damage in CFRP samples were applied to the raw thermographic data, data preprocessed by the suggested method and data pre-processed by the widely used thermographic signal reconstruction (TSR) method. The machine learning models were tested to provide a binary classification of impact damage in CFRP. The results presented in this study show improved performance of the classification if the data are pre-processed by the proposed method. The best results were obtained by a Bagged tree ensemble trained with statistical features. The final balanced accuracy achieved for the Bagged trees model trained on 40 statistical features was 99.8 % which indicates a very good performance.
Klíčová slova

Zpět

Patička