
Documentation of HyperHom-SfePy

1 Introduction

HyperHom-SfePy is a module for the general finite element solver SfePy (simple finite ele-
ments in Python, [1]) — a software written almost entirely in Python and is based on SciPy
([2]) and NumPy libraries.

This module can be used to solve the problems of numerical modelling of heterogeneous
media undergoing large deformations. To derive the mathematical model we use the ho-
mogenization approach [3, 5, 6] which leads to the system of microscopic and macroscopic
subproblems. At the microscopic scale we solve the problem of unknown corrector functions
which are necessary for evaluation of homogenized material coefficients. These coefficients are
employed at the macroscopic scale to solve a global response (displacements, pressure, . . . ).

We assume large deformations and a hyperelastic material model so the macro and micro
subproblems can not be solved separately and we need a coupled micro-macro algorithm.
The macroscopic (global) response is not homogenous in general case therefore the micro-
scopic subproblems which provide the effective material parameters must be solved in whole
macroscopic domain. This intrinsically increase the computational cost of our problem.

2 Mathematical models

2.1 Non-linear problem – Updated Lagrangian formulation

A heterogeneous hyperelastic material undergoing large deformations can be described by
the incremental updated Lagrangian formulation (ULF) in which the discrete equations are
formulated in the current configuration that is assumed to be the new reference configuration.
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Figure 1: Incremental ULF algorithm.

2.2 Homogenization approach

This approach assumes a material microstructure as a periodic lattice generated by repeti-
tion of the so-called reference periodic cell (or representative volume element – RVE). The
micromodel of a RVE is defined using the standard continuum theory. The homogenization
machinery provides the homogenized macroscopic constitutive parameters as a result of the
numerical solution of the local microscopic subproblem.

The governing macroscopic and microscopic equations for deforming media can be ob-
tained in different ways. One possibility is to employ the standard two-scale asymptotic
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method of homogenization [9, 4], while another method is based on the theory of unfolding
operators, as proposed in [3].

Figure 2: Macroscopic (Ω) and microscopic (Y ) domains.

In order to determine the correct homogenized material parameters at a given macroscopic
point, the corresponding local microstructure must reflect the macroscopic deformation and
has to be in equilibrium. The updating process for the microstructure is driven by the relative
macroscopic deformation, but it does not lead automatically to an equilibrated microscopic
configuration, to find a correct microscopic configuration the iterative ULF algorithm must
be used.

and char. responses

compute homogenized coefficients

δu

〈i〉p0,t〈k〉 −→ 〈i〉p0,t〈k+1〉δp

〈i〉Y t
〈k〉 −→ 〈i〉Y t

〈k+1〉

compute micro−corrections

F t
〈i〉

macroscopic

deformation

gradient

Qt
〈i〉St

〈i〉

stiffness coeff.

avg. stress

homogenized parameters

Ωt+1t = t+ 1Ωt,∆f t+1

Ωt
〈i〉 −→ Ωt

〈i+1〉∆u0〈i〉

compute macroscopic displacements

_
converged?

+

Macroscopic Problem

〈i−1〉Y t F ,χ
−→

〈i〉Y t
〈0〉

〈i−1〉p0,t F ,π
−→

〈i〉p0,t〈0〉

update microscopic configuration

Y

Microscopic Problem

〈i〉Y t
〈k〉in            ?

equilibrium

+
_

Ω

πrsχrs
,

Figure 3: Macro–micro computational algorithm.

2.3 Numerical example

Two examples with different microstructures are shown: the microstructure having the a) void
inclusion, b) incompressible inclusion. In Fig. 4 the strain distribution (norm of the strain
tensor) in the deformed macroscopic domain and the local strains in the reference cell at
a chosen macroscopic point are depicted.
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a)
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Figure 4: Traction test – strain distribution (norm of the strain tensor) in the deformed
macroscopic structure (left) and the microscopic strain in the deformed RVE at the marked
macroscopic point (right); a) void inclusion, b) incompressible inclusion.

3 SfePy code

The source code, documentation and examples can be found at http://code.google.com/p/sfepy/
and http://docs.sfepy.org/doc/. The weak forms (terms) required to solve the nonlin-
ear coupled micro-macro simulations are defined mainly in terms hyperelastic ul.py and
termsHyperElasticity.c.
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